

REFRIGERATOR Model : SR-L677EV SR-L679EV SR-L627EV SR-L629EV

SERVICE Manual

REFRIGERATOR

CONTENTS

- 1. Precautions
- 2. Product Specifications
- 3. Electrical Part Specifications & Standard
- 4. Circuit Diagram
- 5. Functions & Operating Instruction
- 6. Circuit Descriptions
- 7. Trouble shooting
- 8. Exploed View
- 9. Disassembly & Assembly
- 10. PCB Circuit Diagram
- 11. PCB Parts List
- 12. Specifications of Main Components

1. Precautions

Warning : Please abide by the following precautions in order to conduct the maintenance procedures in a safety fashion.

1-1. Caution when you replacing compressor.

- Do not smoke. Remove all the possible ignition sources and then replace compressor in wellaired places.
 - Don't use welding machines if R600a refrigerant does not exposed.
 - In the case of gas leakage, always open the windows.
 - When cutting the SUCTION, DISCHARGE pipe of the compressor, always take caution of the inner pressure of the remaining gas.

1-2. Take out the power plug

• Always take out the power plug from the outlet when doing repairs.

1-3. Be careful of electric shocks

- When inspecting the circuit, don't touch the battery charger and be careful of electric shocks.

1-4. Use proper components

Always use the component labeled in the service component chart when replacing components for repairs.

1-5. Use proper tools

- Always use proper tools for repairs. If worn out tools are used, it would cause defects in tuning and electrical contact, leading to accidents.
- 1-6. When doing repairs, inspect the POWER
 - CORD or whether there is fire in the lead wire and make sure they are replaced.

1-7. Cutting of LEAD-WIRE

• For connecting the lead-wire that has been cut off, use soldering or connector and always disconnect the vinyl tapes.

1-8. Check for disconnection

• After completing the assembly, always measure 0 the disconnection resistance level, and turn on the power after checking it is above $1M\Omega$.

1-9. Earth

· Check the status of earthing and repair the incomplete ones.

1-10. Be careful of children

• There is always the possibility of danger when doing repairs so make sure that children can't come nearby.

Cleaning : After completing repairs, clean the surrounding area and the refrigerator and tell the consumer about the repairs being made.

This appliance contains a small amount of the refrigerant isobutane(R600a), a natural gas with high

environmental compatibility but which is also combustible. When transporting and installing the appliance, care should be taken to ensure that no parts of the refrigerating circuit are damaged. Refrigerant squirting out of the pipes could ignite or cause an eye injury. If damage occurs nevertheless, avoid any flames or potential sources of ignition, and air the room in which the appliance is standing for several minutes.

- In order to avoid the creation of a flammable gas-air mixture if a leak in the refrigerating circuit occurs, the size of the room in which the appliance may be sited depends upon the amount of refrigerant used. The room must be 1m3 in size for every 8 g of refrigerant R600a inside the appliance. The amount of refrigerant contained in your particular appliance is shown on the identification plate inside the appliance.
- Never start up an appliance showing any signs damage. If in doubt, consult your dealer.

\bigcirc	Refers to prohibition.
	Refers to prohibition of dismantling.
	Refers to prohibition of contact.
0	Refers to guidelines which have to be followed.
	Refers to detaching the power plug from the outlet.
	Refers to earth connection for preventing electric shocks.

2. Product Specifications

M	odel	SR-L629EV	SR-L679EV	SR-L627EV	SR-677EV	
T	уре		LMF 2	Door		
Freezer p	erformance	* *** (4-STAR)				
Temperat	Temperature control			c control		
Water o	Y	Yes No				
Not Consoitu	Total	501(17.69)	551(19.46)	506(17.87)	556(19.63)	
	Freezer	143(5.05)	161(5.68)	143(5.05)	161(5.68)	
<i>U</i> (IT)	Refrigerator	358(12.64)	390(13.77)	363(12.82)	395(13.95)	
	Total	526(18.57)	575(20.30)	531(18.75)	580(20.48)	
	Freezer	168(5.93)	185(6.53)	168(5.93)	185(6.53)	
<i>u</i> (it)	Refrigerator	358(12.64)	390(13.77)	363(12.82)	395(13.95)	
Net di (W ×	mension D X H)	820 × 720 × 1790 (mm) (SR-L629(7)EV) 820 × 770 × 1790 (mm) (SR-L679(7)EV)				
Foom	Cabinet insulation		CYCLO-F	PENTANE		
FUAIII	Door insulation		CYCLO-F	PENTANE		
Liper	Cabinet		A.E	3.S		
Linor	Door		A.E	3.S		
Net w	veight	103Kg	108Kg	102Kg	107Kg	

3. Electrical part specifications & standard

ITEN	l		:	STANDAR)	
Mode	1	SR-	L629EV, SR-L	679EV, SR-L6	27EV, SR-L67	7EV
Rated Vol	Itage	230-240V	230-240V	220V	127V	115V
Frequer	50HZ	50HZ	50-60HZ	60HZ	60HZ	
	Model	MK4A3Q-L1U	DK182Q-L2U	SK190H-L2U	DK172P-L2U (MK172P-L2U)	DK172C-L2U (MK172C-L2U)
Compressor	Starting type	RSCR				
	Refrigerant	R600a	600a R134a			
	Oil Charge	2GSD(Mineral), 280cc	⁷ Freol α -15c(Ester), 265cc Freol α -15c(Ester), 265cc (Freol α -10c(Ester)			Ester), 265cc Ester), 265cc)
Evaporator	Freezer	Split Fin & Tube Type				
Evaporator	Refrigerator		Split	Fin & Tube	Туре	
Conde	enser	Forced & Natural Convection Type				;
Dry	rer		Mole	cular Sieve	XH-9	
Capillar	ID0.82 × L3500, 5.10kg/cm ²	ID	0.82 × L300	00 4.64kg/c	m²	
Earth s	BSBN(Brass screw)					
Door s	witch	DC12V 0.5A(S2PF101B) AC250V 0.7A, AC125V 1.4A(SSD-6D)				SD-6D)

		ITEM							STAN	DARI	D
			Ту	уре Т	Tempe	erature Select	ion	ON(°	C)	(OFF(°C)
	_					–25°C		-23.5	5°C		–26.5°C
e	Freezer	ſ	F-S	ensor	nsor –19°C		-17.5	5°C		–20.5°C	
atu						–14°C		-12.5	5°C		–15.5°C
Ibel			Ty	уре Т	Tempe	erature Select	ion	ON(°	C)	(OFF(°C)
Ten						1°C		2.5°	C		–0.5°C
·	Refrigerat	tor	F-S	ensor		4°C		5.5°	с		2.5°C
						7°C		8.5°	с		5.5°C
				First	Defro	st Cvcle					
			(Cc	oncurrent	t Defr	ost of F and R)		4hr \pm	10min	
	Defrostin	ng	(00	Defro	st Cv	cle(FRF)	.)	6 - 22hr(Var	v according	to the	conditions used)
		0		Defro	st Cv			6 - 11hr(Var	v according	to the	conditions used)
				Deno.	31 Oyt				$\frac{10 + 10}{10}$	2min	
				From	ause	Sensor				2	
				Pofria							
	Sensor			ERE Evan-Sensor THERN			THERMIST				
					Evap	Sonoor					
				Amphian							
arts											
al p				Drain Hostor(FRE)				242W (<u>115V, 12</u>	7V, 22	20V, 240V)
tric	Heater			Drain Heater(FRE)			52W(1	15V, 127	V, 22	0V, 240V)	
lec				Defrost Heater(REF)			120W(*	115V, 127	7V, 22	20V, 240V)	
				Drain	Heat	er(REF)		38W(115V, 127V, 220V, 240V)			
	_		overh	nermal-F	Freez	or preventing er Defrost-Heat	ter	AC250V 10A 77±5°C			
	Fuse			Thermal-F	Fuse fo	or preventing					±5°C
			overh	neating of	Freez	er Defrost-Heat	ter				
	Rated V	oltage		230-24	40V	230-240V		220V	127	V -	115V
	Compr	ressor		MK4A30	12)- 1	DK1820-L2LL		SU-00HZ	DK172P-	L2U	DK172C-L2U
		STAR	TING	inite inite a	2 210	DITIOLO		RSCR	(IVIN172F-	·L20)	(IVIK 1720-L20)
	Condenser	RUN	NING	350VAC,	3.5 μF	350VAC, 5.0µF	35	0VAC, 8.0 μF	250VAC,	12 µF	250VAC, 12µF
	Overload	MO	DEL	4TM232PH	BYY-53	4TM265RHBYY-53	4TN	1314RHBYY-53	4TM435PH	BYY-53	4TM437RHBYY-53
	Protector	TEM	P. ON	125±	±5	130±5		130±5	125±	-5	130 ± 5
	T		P. OFF	69±	-9	69±9		69±9	69±	9	69±9
	STARTING- RELAY 0		DEL	J531Q35E330	30M385-2	J531Q35E330M385-2	J53 ⁻	1Q34E220M3502	J531Q33E100)M200-2	J531Q33E100M200-2
				33±2	20% NII 50	33±20%	∠ 19′	22±20%	10±2		10±20%
	MOTOR-		KE. FF	153210-5	SNI 5B	IS3208-SNI 5B	ISC	3210-3141 B 3208-SNF7D	IS3208-SN	NP6H	IS3210-SNP6H
	FAN	CIRC	CUIT	IS3208-S	SCL5A	IS3208-SCL5A	IS	3208-SCF7A	IS3208-S0	C06A	IS3208-SCH6A
		FF	RE.			240V/15W			11	10V-13	0V/15W
	LAIVIP	RE	EF.			240V/25W			1	10V-13	30/30W

4. Circuit Diagram

4-1. 230V-240V/50Hz, 220v/50Hz,60Hz, 127V/60Hz, 115V/60Hz

4-2. 230V-240V/50Hz, 60Hz, 220V/50Hz,60Hz, 127V/60Hz, 50Hz, 115V/50V,60Hz(INVERTER PCB)

5. Function & Operating Instruction

5-1. Product Dimension

MODEL	Α	В	С	D	E	Remarks
SR-L679EV	1790	1013.5	1508	755	667	"X"
SR-L677EV	1790	1013.5	1508	755	667	"Y"
SR-L629EV	1790	1013.5	1458	705	617	"X"
SR-L627EV	1790	1013.5	1458	705	617	"Y"

5-3. Circulation of Refrigerant (H.M CYCLE)

Compressor \rightarrow Sub condenser \rightarrow Cluster pipe \rightarrow Hot pipe \rightarrow Dryer \rightarrow Capillary tube \rightarrow R-Evaporator \rightarrow F-Evaporator \rightarrow Accumulator \rightarrow Suction pipe \rightarrow Compressor

5-4. Cool Air Circulation

5-5. Temperature Control and Other Capacity Explanation

1. Display design

2. Temperature control function

1) Temperature selection of freezer compartment

* After the initial key selection, it displays the notch which is presently set up, then within 5 seconds re-memorize the key after 1-2) points mentioned below. If there is no input of the key, it moves back to the previous temperature display.

- 1-1) From -14°C ~ -25°C, each one key is selected in 1°C interval.
- 1-2) Selection key operation for Freezer is set up orderly.
- 1-3) Actual temperature is indicated during both Power-On and electrical failure.
- 1-4) Standard temperature of each stage is as follows.(standard for 1/3 height)

Stage	1	2	3	4	5	6	7	8	9	10	11	12
Temperature	-14°C	-15°C	-16°C	-17°C	-18°C	-19°C	-20°C	-21°C	-22°C	-23°C	-24°C	-25°C

1-5) After key input, seven-segment indication changes immediately but actual function operates after 10seconds.

2) Temperature selection of refrigerator compartment

- 2-1) From 7°C ~ 1°C, each one key is selected in 1°C interval.
- 2-2) After the initial key selection, the former selected temperature is displayed, and within 5seconds temperature selection alters as in 2-3), and when final key input is done, the final key input temperature converse into a set point after 10 seconds.
- 2-3) Set up is established orderly according to operation of selection button.
- 2-4) Actual temperature is indicated during both Power-On and electrical failure.
- 2-5) Standard temperature of each stage is as follows.(standard for 1/3 height)

Stage	1	2	3	4	5	6	7
Temperature	7°C	6°C	5°C	4°C	3°C	2°C	1°C

2-6) After key input seven-segment indication changes immediately but actual function operates after 10seconds.

3) Quick freeze

- 3-1) Press the on/off buttons of Quick Freeze so that the lamp of Quick Freeze is light up and off and then it operates it's function automatically.
- 3-2) It does not indicate from initial Power on.

Change of	Initial Power On	Pressed once time	Pressed second time	Remark
light indication	Off	- > Quick Freeze On	► Off	

- a) When Quick Freeze is selected, LED indication will immediately change but actual operation operates after 10 seconds. (COMP and FAN operates continuously for 2 hours and 30 minutes and it switches off automatically.)
- b) When Quick Freeze is selected, it will operate unconditionally without considering the temperature of freezer compartment.
- c) During the operation, the temperature of refrigerator compartment is controlled automatically by the selected temperature.
- d) Temperature display of freezer displays actual temperature.

4) Quick cool.

- 4-1) Press the on/off buttons of Quick Cool so that the lamp of Quick Cool is light up and off then it operates its function automatically.
- 4-2) It does not indicate from initial Power on.

Change of light indication	Inition Power On	Pressed Once time	Pressed second time	Remark
	► Off	- > Quick Cool On	► Off	

- a) When Quick Cool is selected, LED indication will immediately change but actual operation operates after 10 seconds.
- b) When Quick Cool is selected, COMP and R-Fan are operate until the temperature of refrigerator compartment reached -2°C but the maximum operation time of Quick Cool is 2 hours and 30 minutes. So that, it switches off automatically after 2 hours and 30 minutes.
- c) During the operation, the temperature of freezer compartment is controlled automatically by the selected temperature.
- d) Temperature display of refrigerator displays actual temperature.
- If you press Quick Freeze and Quick Cool button concurrently, each function operates independently.

Reference

If you choose Quick Freeze or Quick Cool when freezer temperature is more than -10°C and refrigerator temperature is above +10°C just as the initial Power On Condition, it operates differently from what is mentioned above, and this is an exceptional case.

5) Sabbath function

- 5-1) It will turn to sabbath function if you press freezer and refrigerator temperatune button together for 5 seconds.
- 5-2) When turned to sabbath function, all of the front display of LED turn off.
- 5-3) The light will not switch on even when the door is opened, and if it was switched on then it will switch off.
- 5-4) To cancel the operation, you have to press freezer and refrigerator temperature button together again for 5 seconds.
- * This function is used only in special area.
- 3. Buzzer alarm function
- 1) Touch button type (ding-dong sound)
 - 1-1) there is "ding-dong" sound to confirm input periodically for each one second for button operation in each control panel.
 - 1-2) key recognition is within 0.2 sec and "ding" sound beeps in continuous key recognition.
 - 1-3) key recognition sound will first activate in other information.
- 2. Alarm when door is open
 - 2-1)Alarm melody will run if door of freezer or refrigerator is open for 2 minutes or more.
 - 2-2) If door continue to remain open alarm will run periodically.
 - 2-3) Alarm will immediately stop when door is closed.
- 3. Forced running alarm and forced defrost alarm (beep sound).
 - 3-1) If forced running, or defrost is chosen, there is a beep sound.
 - 3-2) Once you press forced running test button, it will beep until you choose cancellation or it cancel automatically (0.25sec ON/0.75sec OFF)
 - 3-3) It will beep even during defrost is complete (include paused time) or until cancel button is pressed.
 - 3-4) During forced running alarm runs 0.1sec on and 1sec off, and during forced defrost alarm runs as well 0.5sec on and 0.5sec off.
- 4. Defrost function
 - 1) Once power is on and COMP is ON for 4 hours, both refrigerator and freezer starts to defrost at the same time.
- 2) When the defrost time is reached, F-Fan and COMP runs pre-cooling for 20 minutes and starts heating activity then the pause time is operated about 8 ~12 minutes(10±2minutes).
- 3) Actual defrost period is from minimum 6 hours up to maximum 11 hours, and freezer compartment defrost period is from min. 12 hours up to max. 22 hours instantaneously (COMP ON for additional period).
- 4) The decision of defrost period is maded by the ambient temperature and the count of door open and the length of door open time.
- 5) Defrost periods memorize these information at MICOM as a case per hour. Therefore, case of defrost period distinguishes per hour.
- 6) Influences of count and length of door open for time distinguisher get checked from the door switchs of refrigerator compartment and freezer compartment.
- 7) If refrigerator compartment temperature is over trset -on+6°C (at ambient temp. is over 21°C) or trset-on+2°C (at ambient temp is over 33°C), COMP is runned by refrigerator compartment temperature. In this case, the defrost heater of refrigerator compartment starts after 2 hours running of COMP.
- 8) After 7) is proceeded, the concurrent defrosting of freezer and refrigerator start after 4 hours 4 hours running of COMP.
- 9) If defrost operation is reached during quick freeze operation, quick freezer operation is finished first and then defrost operation is proceeded.

- 5. Test function
 - * Test function is for the test of PCB, product, official inspection and ability of SVC.
 - * When s/w test is chosen and tested the product, you switch off and on again then let it run a self-test.
 - 1) Function of forced running.
 - 1-1) If you choose PCB button once, COMP will automatically start.
 - 1-2) When forced running is chosen, freezer will show "FF" and "1" in refrigerator automatically. when this option is selected and 1 minute is past, temperature memorized will not change even if you select defrost or cancel test activation (maintains F:-25°C and R:1°C).
 - 1-3) Forced running will activate only for 24 hours in full-down operation. Freezer and refrigerator will automatically activate.
 - 1-4) To cancel forced running power is off and on again or select test cancel mode.
 - 1-5) During forced running alarm (0.25sec ON/ 0.75 sec OFF) runs until it is completed. The alarm will continue without alarm key selection.
 - 1-6) When forced running is selected, quick freeze operation does not activate.
- 2) Forced defrost function
 - 2-1) When you press test button once more during forced running refrigerator compartment activates defrost.(R-defrost only)
 - 2-2) If you press button once more, freezer defrost will start at the same time with refrigerator.
 - 2-3) If forced defrost function is selected, forced running will automatically cancel. And after forced defrost is completed, it will proceed normal operation.
- 3) Test cancel mode
 - 3-1) When you press test button once more during forced defrost in freezer and refrigerator, it proceeds normal operation.
 - 3-2) Alarm will stop during test cancel mode.
- 6. Function of initial Power ON
 - 1) When power ON, refrigerator proceed initial self-test and, if normal, it indicate LED in all operation panel for 2 seconds.
 - 2) When proceeding self-test and if temperature sensor finds fault sensor, LED displays the related LED(see table 1.) for periods of 0.5 sec of related LED.
 - 3) Switch on all LED for 2 sec. Initial display of freezer and refriger show actual temperature.
 - 4) Keep condition of R-defrost heater and F-defrost heater for 3 sec for interval of 0.5 sec.
 - 5) If F and R- defrost is finished at initial condition, COMP, F-fan and R-fan activates intervals with 0.5 sec without inner temperature condition.
- 7. Power failure compensating function
 - 1) function of notch save.
 - 1-1) When you press quick freeze, quick cool, freezer, refrigerator button, micom save present operating and display condition. Once the power is re-instated, the appliance will continue to operate at the most recent temperature setting (except test mode.)
 - 1-2) 1-1) Activity proceeds when F-evap. and R-evap. Temperature is below 10°C added together at initial power ON, it will activate, and if its more than 10°C it goes back to initial mode activity. Quick freeze, quick cool and Sabbath function get not selected.
 - 1-3) If power gets off during quick freeze, quick cool or sabbath function and then the power is re-instated, the appliance will proceed quick freeze or quick cool function again at least one of F-evap. or R-evap. temperature is below 10°C.

- * Exhibition mode
- 1. When you press quick freeze button and freezer temp. button together the operation changes into exhibition mode.
- 2. In exhibition mode, compressor is immediately off and defrost do not activate.
- 3. If you press quick freeze button and freezer temp. button together for 5 sec exhibition mode cancel out and bact to nomal operation.
- 8. Self-test function
 - Define of the fault temperature sensor : temperature of the sensor is over between -50°C (4.5volt) ~ +50°C(0.5volt)
 - 1-1) Self-test fuction due to power ON.
 - a) When a power is ON, it internal MICOM will decide faulty in temperature within 1 sec.
 - b) If faulty sensor is found, the "related display LED" switches on and off for 0.5 sec intervals. And it will not beep (refer to self-test faulty indication table).
 - c) At the LED situation is the faulty sensor display, self-test function key (press quick freezer and quick cool button for 5 sec) is the control of normal temperature is delayed.
 - d) Fixing default sensor when there is an error, or press quick freeze and quick cool button for 5 sec., it automatically cancel and activate normally.
- 2) Self-test function during normal activation
 - a) During normal activation, if you press quick freeze and quick cool key together for 3 sec. temperature selection display of all ON/ OFF show for 2 sec by 0.5 intervals. Including this 2 sec, press quick freeze and quick cool button together for 5 sec then it select self-test function.
 - b) If there is ding-dong sound it change into self-test function. If you press refrigerator temp. selection button during 2 sec display toggle, it proceeds as the display function of the presently operating parts.
 - c) If there is an error of the sensor, display of the faulty sensor continue for 30 sec then activate normally (ding-dong alarm activates).
 - d) Button selecting is not selected during self-test proceeding.

Table 1. Display table of self diagnosis.

No	Item	Display LED	Symptom	Remark
1	R-sensor	Refrigerator 5	Open faultyShort faulty	●Suspected to be below -50°C ●Suspected to be over +50°C
2	R-area defroster sensor	Refrigerator 🚽	Open faultyShort faulty	●Suspected to be below -50°C ●Suspected to be over +50°C
3	Outer sensor	FreezerE 5	• Open faulty • Short faulty	●Suspected to be below -50°C ●Suspected to be over +50°C
4	F-sensor	Freezer <i>F '</i> 5	Open faultyShort faulty	•Suspected to be below -50°C •Suspected to be over +50°C
5	F-area defroster sensor	Freezerd 5	Open faultyShort faulty	●Suspected to be below -50°C ●Suspected to be over +50°C

9. Display function of the presently operating parts.

 If you press quick freeze and quick cool button together for 3 sec during normal operation, LED display refrigerator and freezer temperature will show ON/OFF for 2 sec at interval of 0.5 sec

- 2) At this moment if you take off quick freeze and quick cool button and press refrigerator temp. button (ding-dong sound), it change into the display of the presently operating parts.
- 3) This display condition is unrelated to actual operation and it is an reference of indication that MICOM commanded operating order).

No	Content	Display LED	Operation	Remark
1	R-fan	1 st letter "a" led in refrigerator	Include R-fan activation	
2	R-defrost heater	1 st letter "c" led in refrigerator	Defrost heater activation	
3	Initial start mode	1 st letter "d" led in refrigerator	Initial power is switched ON	
4	Over load mode	1 st letter "e" led in refrigerator	Outer temperature is over 35°C	
5	Low temp.mode	1 st letter "f" led in refrigerator	Outer temperature is below 20°C	Dof 6 hutton coop
6	Exhibition mode	1 st letter "g" led in refrigerator	Exhibition mode is operated together	and display circuitry
7	Comp	1 st letter "a" led in freezer	Led ON when COMP activation is included	(coo nago 21)
8	F-fan	1 st letter "b" led in freezer	Led ON F-fan activation is included	- (see paye 21)
9	F-defrost heater	1 st letter "d" led in freezer	Led ON when F-heater activation is included	
10	F-Lamp	1 st letter "a" led in freezer	Led ON when F-lamp activation is included	
11	R-Lamp	1 st letter "b" led in freezer	Led ON when R-lamp activation is included	
12	Normal mode	1 st letter "e", "f" led off in refrigerator	Out temperature is about 21°C~34°C]

Table 2. Display table of the presently operating parts.

10. Actual temperature and selected temperature in display function

- 1) Initial power ON
 - 1-1) When initial power On is set, it reads both inner temperature of freezer and refrigerator. Display range of freezer is -35°C~+30°C and refrigerator -9°C~+9°C.
 - 1-2) After this, if freezer inner temperature of a trset_off+1°C above is recognized at least once, LED display of freezer will change into a set-up temperature. And if refrigerator inner temperature of trset_ off +3.5°C above is recognized at least once, LED display of refrigerator will change into a set-up temperatures. After all this, if freezer inner temperature is above 0°C and refrigerator inner temperature above +15°C it will proceed display blinking. But blinking operation only starts 10 minutes after it senses its problem with inner temperature.
 - 1-3) During the actual temp. dispaly condition, you choose quick freeze or quick cool function the LED display will display actual temperature.
- 2) Stability in inner temperature
 - 2-1) After selected temp. is reached, freezer and refrigerator display the selected temp.
 - a) If freezer inner temperature is above 0°C for 10 minute, the display of the selected temp. will blink.
 - b) If refrigerator inner temperature is above 15°C for 10 minute, the display of the selected temp. will blink.
 - c) When quick freeze is chosen, only freezer display will display actual temperature and the actual temperature displays up to -35°C.

3) Door open

when door is open, the related display shows an actual temperature.

- 3-1) Display range of freezer is -35°C ~ 30°C and refrigerator is -9°C~9°C.
- 3-2) If freezer inner temperature is above 0°C for 10 minute, the display of the selected temp. will blink.
- 3-3) If refrigerator inner temperature is above 15°C for 10 minute, the display of the selected temp. will blink.
- 3-4) When door is open, 1°C will increase after delay time from the display before door opens. When door close, 1°C will decrease after delay time if there is a change in inner temperature. Temperature will reach up to presently selected notch.

4) Defrost Display function

4-1) If defrost starts both freezer and refrigerator display the selected temperature. So it will not blink for 2 hours even if it sensed faulty in inner temperature, after 2 hours it will decide to blink or not.

Reference

State of COMP cooling fan according to the ambient temperature (When COMP. is re-started) - always OFF COMP cooling fan when ambient temperature is below 5°C.

- COMP cooling fan always switch ON after 9 minute when ambient temperature is 6°C~10°C.
- COMP cooling fan always switch ON after 6 minute when ambient temperature is 11°C~15°C.
- COMP cooling fan always switch ON after 3 minute when ambient temperature is 16°C~21°C.
- COMP cooling fan always switch ON when ambient temperature is over 21°C.

NO	CODE NO	ITEM	SPEC	Q'ty	Remark
1	DA41-00099A	PBA MAIN	W2 PJT	1	
2	DA41-00099B	PBA MAIN	W2 PJT	1	AHAM OPTION
3	DA41-00102A	PBAPANEL	W2 PJT	1	
4	DA26-30111H		220~240V/50, 60Hz	1	Different
5	DA26-30111F	DC TRANS	105V/50,60Hz	1	according to the
6	DA26-30111C		127V/50,60Hz	1	source of power
7	DA32-00006C	F, R DEF SENSOR	PX-41C	1	
8	DA32-00006C	F, R DEF SENSOR	PX-41C	1	
9	DA32-10109H	R SENSOR	PX-41C	1	
10	DA32-10105A	F SENSOR	PX-41C	1	
11	DA41-00013B		220~240V/50,60Hz	1	Different
12	DA41-20160A	INVERTER PCB	127V/50,60Hz	1	according to the
13	DA41-20148A		105~115V/50,60Hz	1	source of power

(PCB Part List)

* code for temperature might change due to after the progress in development in products

6. Circuit Descriptions

6-1. Power circuit

Voltage	Circuit used
	Relay Operation & LED Display
• Vcc (DC 5V)	Power around MICOM & Sensor Detector

- The input AC voltage of DC-trans secondary registers 8V at CN10 between ①~③. The rectified voltage passed through D101 ~ 104 becomes DC 5V through voltage regulator MC7805(REG1). The power(DC5V) is supplied to the power around micom and sensor detector.
- The input AC Voltage of DC-trans secondary registers 15V at CN10 between ⑤ ~ ⑦. The rectified voltage passed through D105 ~ D108 becomes DC 12V through voltage regulator MC7812CT (REG2). The power (DC12V) is supplied to the relay operation and LED display.

6-2. Oscillator

Port	Oscillating Frequency
Xin(#19)	4.00MHz
Xout(#20)	4.00MHz

±0.5% Error

It is designed for clock generation and time calculation for synchronizing transmission and reception on the logic elements inside the MICOM. If the X-TAL specification changes, MICOM may make an error.

(The standard components should be used.)

6-3. Reset Circuit

Port	Voltage
Vcc	5V
Reset	5V

When power is supplied to MICOM, reset circuit initializes RAM and other parts on MICOM to initialize all programs. Reset voltage maintains "low" for hundreds of µsec comparing to MICOM Vcc voltage when power is input. It also maintains "high"(5V) during normal operation. But, when Vcc drops to 3.4V-3.7V, reset port becomes "low".

6-4. Door S/W Detector

DOOR	Door Conditions	Door S/W Contact	MICOM PIN NO	Micom Input Voltage
-	CLOSE	OPEN	" 00	"HIGH"
	OPEN	CLOSE	# 39	"LOW"
D	CLOSE	OPEN	" 10	"HIGH"
ĸ	OPEN	CLOSE	# 40	"LOW"

- 1) If door is open, door S/W contact is closed. Then MICOM receives "low" signal and detects door open then, Relay control circuit receives "HIGH" signal and turn Lamp on.
- 2) If door is closed, door S/W contact is open. Then MICOM receives "high" signal and detects door close then, Relay control circuit receives "LOW" signal and turn Lamp off.

6-5. Temperature Sensor

(Air Sensor)		
	When Sensor	is

When Sensor is open	When sensor is cut off
MICOM input "HIGH"	MICOM input "LOW"

- 1) The sensor uses the characteristics of thermistor. If temperature goes higher, resistance goes lower. On the contrary, if temperature goes lower, resistance goes higher.
- 2) MICOM input voltage is counted by sensor as follows.

$$V_F = \frac{R_{TH}}{R_{TH} + R_{301}} X Vcc$$
 (Vcc : 5V, RTH : Sensor reisitance)

3) For the resistance information on temperature and MICOM input voltage, please refer the conversion table. (Page. 41)

At that time, the peak to peak voltage of square signal registers around 12V. The grid #1 ~#5 waveforms are as follows.

If MICOM outputs "high" signal to driver-IC(KID65003AP/S1P2655A Ø 3) according to each load operation conditions, IC turns on and DC 12V flows to ground through the relevant relay coil. Then, core is magnetized by the coil current, and relay contact switches on. When relay contact is on, AC POWER is supplied to the relevant operation load, then which will be activated. If MICOM outputs "low" signal, load operation stops with the relevant relay contact off.

RELAY		Lood	Pomark		
COMP	Defrost Heater	LUdu	itellidi k		
on	off	Comp Operation	Defrost-Heater Power Off		
on	on	Comp off, Defrost-Heater Off			
off	on	Defrost-Heater On	Comp Power Off		
off	off	Comp Off, Defrost-Heater Off			

Like the above block diagram, operation of F, R defrost heater is detervminedy according to the operation of relay for COMP. When comp relay is connected to NO terminal, comp operates. However, in case of F, R defrost heater, electricity dose not pass through the heater though relay works, But, if Comp relay is connected to NC terminal, comp does not operate and heater gets electricity according to operation of F, R defrost relay.

Temperature and function values are changeable by using main PCB switching diode.

• Note : If possible, do not change because the values have been set in factory. When changing option functions, power should be turned off.

(Only initial power-on allows reading option function)

6-9. Option Table

NOTE

If possible, do not change because the values have been set in factory. When changing option functions, power should be turned off.

1) Freezer I	emperature	Shift	(Unit °C)	2) Refrigerat	tor lempera	ature Shift	(Unit °C)
SHIFT	D601	D602	D603	SHIFT	D604	D605	D606
Reference	-	-	-	Reference	-	-	-
-0.5	-	-	•	-0.5	-	-	•
-1.0	-	•	-	-1.0	-	•	-
-2.0	-	•	•	-2.0	-	•	•
-3.0	•	-	-	-3.0	•	-	-
+1.0	•	-	•	+1.0	•	-	•
+2.0	•	•	-	+2.0	•	•	-
+3.0	•	•	•	+3.0	•	•	•

1)	Freezer	Temperature Shift
----	---------	-------------------

.

7. Trouble shooting

Precautions

- 1. Is the power cord well connected to wall outlet?
- 2. Refer to the reference

1) No power

2) Problem with self-test

2-1) Problem with outside temperature sensor

2-2) Problem with refrigerator temperature sensor

2-3) Problem in refrigerator defrost sensor

2-4) Problem in freezer temperature sensor

2-5) Problem in freezer defrost sensor

3) Compressor does not run

Reference

- 1. Compressor does not operate in 5 minutes after compressor OFF.
- 2. Compressor does not run during defrosting.
- 3. Compressor does not run because low temperature is detected if freezer and refrigerator sensor is not connected.

4) When cooling fan do not activate

Reference

Check cooling fan when defrost activation is selected.

1. When COMP is OFF both freezer and refrigerator cooling fan plus COMP cooling fan remain OFF.

2. When COMP is ON, refrigerator fan is not always ON and when refrigerator temperature reached to a set-up temperature fan goes OFF.

3. When both freezer and refrigerator door close from open each fan takes delay time (5sec~ 1 min) and running. (COMP ON as a condition)

4-1) When freezer fan (f-fan) do not activate

4-2) When refrigerator fan (R-fan) do not activate

4-3) When COMP cooling fan do not activate

5) No defrosting

Reference

- 1. Even though both F-R-defrost sensors short-circuit, normal operation continues without defrosting.(Refer to self-diagnosis function)
- 2. Even though the temperature fuse is off, there is no heating but defrosting natural temperature increase comp off-time takes longer.
- 3. Even though both F-R-defrost sensor are open, heating does not end and comp-off maintains with temperature fuse short-circuited.(Refer to self-diagnosis function)

6) When alarm run continuously

Reference

1. Alarm runs after 2 minute when door is open (melody) and runs in interval in every 2 minutes.

2. If door close is not done properly, MICOM will indicate that the door is open then alarm rings. If it recognize door open over 10 minutes it switch OFF inner lamp goes OFF. Lamp will not go ON in this situation even if door opens.

6-1) If melody alarm runs continuously

6-2) If Beep sounds continuously

6-3) When original panel PCB do not activate

6-4) When buttons of panel PCB is not selected

Reference

- 1. Is the power cord well connected to wall outlet?
- 2. Be careful of high-voltage discharge because high voltage DC power is supplied to SUB-PCB.

6-5) When the light dosen't come on in the refrigerator

8. Reference

Reference2 Inspection of Relay

- * First separate the housing connected to the main PCB CN70, 71 and measure the following items.
- 1. Measure the coil bisection of the relay and check whether it works.
- 2. Measure the apex bisection for open circuit.

Apex category	The voltage of coil bisection	Judging the apex bisection		
	DC 12 V (Operation)	C-NO:SHORT		
Apex 3		C-NC:OPEN		
	DC 0\/(Standstill)	C-NO:OPEN		
	DC 0V (Standstill)	C-NO:SHORT		
Apox 2	DC 12V(Operation)	SHORT		
Abex 2	DC 0V(Standstill)	OPEN		

Note) C \rightarrow Common, NO \rightarrow Normal open, NC \rightarrow Normal close

3. When it operates as above, it is normal and when it does not operate, report the corresponding relay.

Reference3 Check for malfunctioning of the subordinate

Reference4 Inspection of the sensor

- * Cut off the power code, separate the housing from the main PCB CN70,71 and measure the following.
- 1. Measure resistance between the terminals and check for malfunctioning of L/W.

Subordinate	Measurement terminal	Evaluation of mea- surement result
R Defrost heater	CN70 5 - 1	
F Defrost heater	CN70 🗇 - 🕦	
Comp	CN70 (9) - ①	
Comp-circulation fan	CN71 ⑦ - ①	
R-Circulation fan	CN71 (5) - (1)	
F-Circulation fan	CN70 3 - 1	
R-Lamp	CN71 (9 - 1)	
F-Lamp	CN71 3 - 1	

- * Separate the housing connected to main PCB CN30.
- * Resistance value lowers while temperature rises, because it is a NTC type sensor.
- 1. R sensor measures resistance of CN30 between 2~5.
- 2. Freezer sensor measures resistance of CN30 between $(1 \sim 5)$.
- 3. R-defrost sensor measures resistance of CN30 between $\textcircled{4}\sim\textcircled{5}$.
- 4. F-defrost sensor measures resistance CN30 between $\Im \sim 5$.
- 5. The measurement value above is calculated by comparing the present temperature of the sensor and the temperature table in specification found in the manual.

Reference5 Checking the Door S/W

(Refrigerator Bulb)

- 1. Open the door and check if the freezer bulb turns on.
- 2. Press the Door S/W and check if the freezer bulb turns off.
- 3. Close the door of freezer and repeat 1 and 2 for refrigerator.
- 4. If there is a problem, check bulb and door S/W.
- 5. Check wire connection.

(Micom signal)

- 1. Check if CN30 6 and 8 is 5V DC after closing the F-R doors.
- 2. Check if CN30 ⁽⁶⁾ is 0V DC when opening F door. Check if CN30 ⁽⁸⁾ is 0V DC when opening R door.
- 3. If there is problem, check door S/W and wire connection.

Reference6 Forced running & forced defrosting

(Forced running)

- * This function is used to turn on the comp and fan immediately regardless of the temperature of freezer.
- 1. Press the button on the PCB after removing the main PCB cover from the upper part of refrigerator.
- 2. Buzzer will sound to indicate the forced running.

(Forced defrosting)

- * This function is used to turn on the defrosting regardless of defrost time.
- 1. Press the button during forced running. Then, R-defrosting is performed.
- If the button is press during R-defrosting, Fdefrosting is also performed at the same time.
- 3. If the button is pressed during R-F defrosting, test mode is released.

Reference7

Sensor resistance and voltage conversion table for temperature (Sensor pressure voltage $10K\Omega$ – Voltage converted by the F-reference)

* Voltage conversion table depends on H/W structure of MICOM port input voltage.

Sensor Short : Micom 0V. Sensor Open : Micom 5V.

* Sensor partial pressure resistance $10K\Omega$

TEMP.	Resistance KΩ±1%	Voltage(V)	TEMP.	Resistance KΩ±1%	Voltage(V)	TEMP.	Resistance K Ω ±1%	Voltage(V)
- 35	68.648	4.364	- 13	22.832	3.477	9	9.016	2.37
- 34	65.011	4.333	- 12	21.814	3.428	10	8.673	2.322
- 33	61.595	4.301	- 11	20.848	3.379	11	8.345	2.274
- 32	58.384	4.268	- 10	19.932	3.329	12	8.032	2.227
- 31	55.366	4.235	- 9	19.062	3.279	13	7.732	2.18
- 30	52.526	4.2	- 8	18.237	3.229	14	7.446	2.134
- 29	49.854	4.164	- 7	17.453	3.178	15	7.172	2.088
- 28	47.337	4.127	- 6	16.709	3.127	16	6.910	2.043
- 27	44.967	4.09	- 5	16.001	3.076	17	6.659	1.998
- 26	42.733	4.051	- 4	15.328	3.025	18	6.420	1.954
- 25	40.626	4.012	- 3	14.688	2.974	19	6.190	1.911
- 24	38.640	3.972	- 2	14.080	2.923	20	5.970	1.869
- 23	36.765	3.93	- 1	14.501	2.872	21	5.759	1.786
- 22	34.995	3.888	0	12.949	2.821	22	5.557	1.786
- 21	33.323	3.845	1	12.424	2.77	23	5.363	1.745
- 20	31.743	3.802	2	11.924	2.719	24	5.178	1.705
- 19	30.250	3.757	3	11.447	2.668	25	5.000	1.666
- 18	28.838	3.712	4	10.993	2.618	26	4.829	1.628
- 17	27.502	3.666	5	10.559	2.567	27	4.665	1.59
- 16	26.237	3.62	6	10.146	2.518	28	4.508	1.553
- 15	25.040	3.573	7	9.752	2.468	29	4.357	1.517
- 14	23.906	3.525	8	9.375	2.419	30	4.212	1.481

9. Exploed View

9-1. Freezer room

NO		PART NAME		OF	PTION		SPEC
			SR-L627	SR-L629	SR-L677	SR-L679	JFL0
1	DA67-40203N	TRAY-ICE,ASSY					
2	DA67-40182A	TRAY ICE					
3	DA63-00946A	TRAY-FRE UPP,ASSY					
	DA63-00946B	TRAY-FRE UPP,ASSY					
4	DA63-00947A	TRAY-FRE MID,ASSY					
	DA63-00947B	TRAY-FRE MID,ASSY					
5	DA63-00948A	TRAY-FRE LOW,ASSY					
	DA63-00948B	TRAY-FRE LOW,ASSY					
6	DA66-10104A	ROLLER FRE					
7	DA71-20145A	FIXER ROLLER					
8	DA63-00904A	TRAY ICE CUBE					
	DA63-00922A	TRAY ICE CUBE					
9	DA97-00181A	COVER EVAP FR(FRE),ASSY					
10	DA97-00192C	EVAP-FRE ASSY					240V
	DA97-00192D	EVAP-FRE ASSY					220V
	DA97-00192E	EVAP-FRE ASSY					127V
	DA97-00192F	EVAP-FRE ASSY					115V
11	DA47-00095E	ASS'Y-FUSE THERMO(77°C)					EVAP FRE.250V
12	DA32-00006C	SENSOR ASSY					EVAP FRE
13	DA97-00122A	ASSY SUPT-FREE					230V
_	DA97-00122B	ASSY SUPT-FREE			•		230V
	DA97-00122C	ASSY SUPT-FREE					110~130V
	DA97-00122D	ASSY SUPT-FREE					110~130V
14	DA61-70114B	SUPPORT-EREE I					
15	DA61-70115C	SUPPORT-EREE R					
16	DA63-40006A	GROMMET RAIL					ASSY SUPT-EREE
17	DA63-00924A	COVER-LAMP FRE				-	
	DA63-00923A	COVER-LAMP FRE					
18	DA47-40112N						
19	DA31-10105A	SENSOR ASSY					ASSY SUPT FREE
20	4713-000213						230V 15W
20	4713-001035						110~130V/15W
21	DA63-00941A						2401/
	DA97-00390A						240V
	DA97-00390B						115V
	DA97-00390C						107\/
22	DA63-00903A						1211
22	DA61-00081A						
23	DA31-00010A						
24	DA31-00019A						2/0\/ 50U7
20							2401,0002
	DA31-0000200						2207,00,00HZ
							12/ V,00HZ
00	DA31-00002V						115V,60HZ
26	DA97-00195B						240V/52W
	DA97-00195C	DRAIN PLATE FRE ASSY					12/V/52W
	DA97-00195D	DRAIN PLATE FRE ASSY					115V/52W
	DA97-00195E	DRAIN PLATE FRE ASSY					220V/52W

9-2. Refrigeration room

NO		PART NAME		OF	PTION		SDEC
	OODE NO		SR-L627	SR-L629	SR-L677	SR-L679	JFLU
1	DA97-00104A	CASE-VEG,ASSY					
	DA97-00184A	CASE-VEG,ASSY					
2	DA67-10225A	CASE-VEG					
	DA67-10229A	CASE-VEG					
3	DA63-10359B	COVER-VEG					
4	DA66-10104A	ROLLER FRE					
5	DA71-20145A	FIXER ROLLER	•				
6	DA68-50153H	INLAY-COVER VEG	•				
7	DA63-00936A	COVER-VEG ASS'Y					
	DA63-00936B	COVER-VEG ASS'Y					
8	DA64-00449A	TRIM-COVER,VEG					
	DA64-00448A	TRIM-COVER,VEG					
9	DA67-00505D	SHELF GLASS					COVER VEG
	DA67-00505E	SHELF GLASS					COVER VEG
10	DA67-00550A	SHELF REF-MID, ASSY					
	DA67-00550B	SHELF REF-MID,ASSY					
11	DA67-00550C	SHELF REF-UPP,ASSY					
	DA67-00550D	SHELF REF-UPP,ASSY					
12	DA64-00450A	TRIM-SHELF REF					SHELF(MID/UPP)
	DA64-00451A	TRIM-SHELF REF					SHELF(MID/UPP)
13	DA67-00505B	SHELF GLASS					SHELF(MID/UPP)
	DA67-00505C	SHELF GLASS					SHELF(MID/UPP)
14	DA61-00368A	RAIL-CHILLED,L					SHELF-UPP
	DA61-00367A	RAIL-CHILLED,L					SHELF-UPP
15	DA61-00370A	RAIL-CHILLED,R		•			SHELF-UPP
	DA61-00369A	RAIL-CHILLED,R			•	•	SHELF-UPP
16	DA67-40194A	TRAY-VEG			•	•	
17	DA97-00296A	TRAY CHIL ROOM-ASSY					
	DA63-00945B	TRAY CHIL ROOM-ASSY			•	•	
18	DA63-00925A	COVER-LAMP REF	•		•	•	
19	4713-001147	LAMP-INCANDESCENT	•		•	•	230V. 25W
	4713-001145	LAMP-INCANDESCENT					130V. 30W
	4713-000175	LAMP-FLUORESCENT	•	•	•	•	ALL
20	DA59-00243A	EVAP-REF ASSY	•				240V 120W
	DA96-00017A	EVAP-REF ASSY	•				220V 120W
	DA96-00017B	EVAP-REF ASSY	•	•			127V 120W
	DA96-00017C	EVAP-REF ASSY	•				115V 120W
21	DA32-10105G	SENSOR ASSY	•				EVAP-REF
22	DA47-00095D	ASSY-FUSE THERMO(R)(77°C)					EVAP-REF 250V
23	DA97-00495A	COVER-EVAP REF ASSY					230-240V 50Hz
	DA97-00495B	COVER-EVAP REF ASSY					220V 50~60Hz
	DA97-00495C	COVER-EVAP REF ASSY					115~127V 60Hz
24	DA63-00933A	COVER-EVAP FR RFF					110-12/14,00112
25	DA63-00932A	COVER-EVAP RF RFF					
26	DA63-00183A	COVER-MOTOR					
27	DA31-00016A	FAN-CIRCUIT					
28	DA63-0003/A	COVER-SENSOR REF					
_ 20	DA00 00304A					-	

NO		PART NAME		OF	TION		SPEC
			SR-L627	SR-L629	SR-L677	SR-L679	GFLO
29	DA64-00452A	TRIM-COVER SENSOR					
30	DA60-00033A	SPACER-DUCT					220V~240/50Hz
31	DA31-00003L	MOTOR-FAN					220V/50~60Hz
	DA31-00003P	MOTOR-FAN					115V~127/60Hz
	DA31-00003N	MOTOR-FAN					
32	DA63-00771A	GROMMET-MOTOR					
33	DA32-10109H	SENSOR ASSY					COVER EVAP
34	DA62-00106A	SEAL-COVER EVAP RE					
35	DA62-00109A	SEAL AIR SIDE					
36	DA70-00402A	PLATE-DRAIN REF ASSY					240V/38W
	DA97-00441A	PLATE-DRAIN REF ASSY					127V/38W
	DA97-00441B	PLATE-DRAIN REF ASSY					115V/38W
	DA97-00441C	PLATE-DRAIN REF ASSY			•		220V/38W

9-3. Door parts

NO		PART NAME		OF	PTION		SPEC
			SR-L627	SR-L629	SR-L677	SR-L679	
1	DA91-01467A	ASSY FOAM-DOOR REF					S/W(COOL TECH)
	DA91-01467B	ASSY FOAM-DOOR REF					S/W(Cool n'cool)
	DA91-01467C	ASSY FOAM-DOOR REF					M/G(COOL TECH)
	DA91-01467D	ASSY FOAM-DOOR REF					M/G(Cool n'cool)
	DA91-01467E	ASSY FOAM-DOOR REF					N/B(COOL TECH)
	DA91-01467F	ASSY FOAM-DOOR REF					N/B(Cool n'cool)
	DA91-01467G	ASSY FOAM-DOOR REF					N/S(COOL TECH)
	DA91-01467H	ASSY FOAM-DOOR REF					N/S(Cool n'cool)
	DA91-01466A	ASSY FOAM-DOOR REF					S/W(COOL TECH)
	DA91-01466B	ASSY FOAM-DOOR REF					S/W(Cool n'cool)
	DA91-01466C	ASSY FOAM-DOOR REF					M/G(COOL TECH)
	DA91-01466D	ASSY FOAM-DOOR REF					M/G(Cool n'cool)
	DA91-01466E	ASSY FOAM-DOOR REF					N/B(COOL TECH)
	DA91-01466F	ASSY FOAM-DOOR REF					N/B(Cool n'cool)
	DA91-01466G	ASSY FOAM-DOOR REF					N/S(COOL TECH)
	DA91-01466H	ASSY FOAM-DOOR REF					N/S(Cool n'cool)
2	DA64-00166A	MASCOT					SAMSUNG
3	DA71-40135A	STOPPER-MID					
4	DA71-40183C	STOPPER DOOR-LOW		•			
5	DA91-01468A	ASSY FOAM-DOOR FRE		•			SNOW WHITH
	DA91-01468B	ASSY FOAM-DOOR FRE		•			SNOW WHTE
	DA91-01468C						METAL GRAY
	DA91-01468D						METAL GRAY
	DA91-01468E						NOBLE BEIGE
	DA91-01468E						NOBLE BEIGE
	DA91-01/68G						NOBLE BEIGE NOBLE STAIN
	DA91-01468H						NOBLE OTAIN
6	DA91-0140011						
7	DA03-01032A						
0							
0	DA03-00927A		•		•		
9	DA03-00929A	GUARD-REF MID, R					
10	DA63-00926A		•		•		
11	DA63-00930A	GUARD-REF LOW, R		•		•	
12	DA63-00931A	GUARD-REF LOW					
13	DA66-00058A	IRAY-EGG					
14	DA61-00365A	GUIDE-BOTTLE					
15	DA61-00378A	HINGE-UPP,ASSY					
16	DA61-00361A	HINGE-UPP					
17	DA63-50145A	SHIM-HINGE UPP		•	•		01011111
18	DA67-00546A	CAP-HINGE UPP			•		SNOW WHITH
	DA67-00546B	CAP-HINGE UPP					METAL GRAY
	DA67-00546C	CAP-HINGE UPP					NOBLE BEIGE
	DA67-00546D	CAP-HINGE UPP					NOBLE STAIN
19	DA61-10153E	HINGE-MID,ASSY					
20	DA61-10142C	HINGE-MID					
21	DA63-50139C	SHIM-HINGE MID					
22	DA63-00943A	COVER-CONTROL PANEL, ASSY					SNOW WHITE
	DA97-00353A	COVER-CONTROL PANEL, ASSY					METAL GRAY
	DA97-00353B	COVER-CONTROL PANEL, ASSY					NOBLE BEIGE
	DA97-00353C	COVER-CONTROL PANEL, ASSY					NOBLE STAIN

NO				OF	PTION		SDEC
	CODE-INO	FART NAME	SR-L627	SR-L629	SR-L677	SR-L679	SPEC
23	DA63-01046A	COVER-CONTROL PANEL					SNOW WHITH
	DA63-01046B	COVER-CONTROL PANEL					METAL GRAY
	DA63-01046C	COVER-CONTROL PANEL					NOBLE BEIGE
	DA63-01046D	COVER-CONTROL PANEL					NOBLE STAIN
24	DA64-00444A	BUTTON-PCB, L, SILVER					SILVER
	DA64-00444B	BUTTON-PCB, L, GOLD					GOLD
25	DA64-00445A	BUTTON-PCB, R, SILVER					SILVER
	DA64-00445B	BUTTON-PCB, R, GOLD					GOLD
26	DA63-00915A	GASKET BUTTON PCB, L					
27	DA63-00916A	GASKET BUTTON PCB, R					
28	DA41-00102A	PANEL-PCB					
29	DA63-00942A	COVER-CONTROL PANEL, ASSY					SNOW WHITH
	DA63-00352A	COVER-CONTROL PANEL, ASSY					METAL GRAY
	DA63-00352B	COVER-CONTROL PANEL, ASSY					NOBLE BEIGE
	DA63-00352C	COVER-CONTROL PANEL, ASSY					NOBLE STAIN
30	DA63-00909A	COVER-CONTROL PANEL					SNOW WHITH
	DA63-00909B	COVER-CONTROL PANEL					METAL GRAY
	DA63-00909C	COVER-CONTROL PANEL					NOBLE BEIGE
	DA63-00909D	COVER-CONTROL PANEL					NOBLE STAIN
31	DA64-00444A	BUTTON-PCB, L					SILVER
	DA64-00444B	BUTTON-PCB, L					GOLD
32	DA64-00445A	BUTTON-PCB, R					SILVER
	DA64-00445B	BUTTON-PCB, R					GOLD
33	DA63-00915A	GASKET BUTTON PCB, L					
34	DA63-00916A	GASKET BUTTON PCB, R					
35	DA41-00102A	PANEL-PCB					
36	DA97-00193A	COVER-DISPENSER ASSY					SNOW WHITH
	DA97-00193B	COVER-DISPENSER ASSY					METAL GRAY
	DA97-00193C	COVER-DISPENSER ASSY					NOBLE BEIGE
	DA97-00193D	COVER-DISPENSER ASSY					NOBLE STAIN
37	DA63-00906B	TRAY-DISPENSER A					SNOW WHITH
	DA63-00906C	TRAY-DISPENSER A					METAL GRAY
	DA63-00906D	TRAY-DISPENSER A					NOBLE BEIGE
	DA63-00906E	TRAY-DISPENSER A					NOBLE STAIN
38	DA63-00905B	TRAY-DISPENSER B					SNOW WHITH
	DA63-00905C	TRAY-DISPENSER B					METAL GRAY
	DA63-00905D	TRAY-DISPENSER B					NOBLE BEIGE
	DA63-00905E	TRAY-DISPENSER B					NOBLE STAIN
39	DA97-00216A	ASSY TANK-WATER					
40	DA67-30216A	CAP-COVER WATER					
41	DA63-00902A	COVER-WATER TANK					
42	DA67-00545A	TANK-WATER					
43	DA97-00217A	ASSY-COCK DISP					
44	DA71-20155B	FIXER-CASE ASSY					

NO				OF	TION		
NO	CODE-NO	PARTNAME	SR-L627	SR-L629	SR-L677	SR-L679	SPEC
1	DA60-90124A	REVET-CASTER					
2	DA61 40101C						
2	DA01-40101C						
3	DA01-00176A						
4	DA61-10145D	HINGE-LOW					
5	DA64-20138B	TRIM-PLATE,ABSORB					
6	DA63-50146A	SHIM-HINGE,LOW					
7	DA63-10262F	COVER-LEG					SNOW WHITH
	DA63-10262A	COVER-LEG					METAL GRAY
	DA63-10262B	COVER-LEG	ě	ě		ě	NOBI E BEIGE
	DA63-10262N						NOBLE STAIN
0	DA03-1020210						DE000
0	DA34-00024A	SWITCH DOOR					R000d
	DA34-00122D	SWITCH DOOR					R134a
9	DA67-10508A	CASE-CONTROL BASE					
10	DA26-30111H	TRANS POWER					220~240V
	DA26-30111C	TRANS POWER					127V
	DA26-30111F	TRANS POWER					115V
11	2501-001185	C-Oll					350V, 3.5uF
	2501-001186	C-OII					350V 5uE
	2501-001045						350V, Sui
	2501-001045						050V, 001
40	2501-001187						
12	DA63-10212J	COVER-PCB PANEL					SNOW WHITH
	DA63-10212B	COVER-PCB PANEL					METAL GRAY
	DA63-10212E	COVER-PCB PANEL					NOBLE BEIGE
	DA63-10212M	COVER-PCB PANEL					NOBLE STAIN
13	DA41-00099A	PBA-MAIN					220V~ 240V
	DA/1-00099B	PRA-MAIN					115~127\/
1/							INIVEDTED_DCB
14	DA41-20140A						a 10
15	DA63-00951A	GROMMET-DRAIN HOSE					٧IU
10	DA63-00951B	GROMMET-DRAIN HOSE					
16	DA62-20001Q	TUBE-PVC					
17	DA63-10564H	COVER-COMP ASSY					
18	DA31-00010B	FAN-ASSY					
19	DA31-10110H	MOTOR-CIRCUIT					230V~240V/50Hz
	DA31-10110F	MOTOR-CIRCUIT					220V/50~60H7
	DA31 10110						127\//60H7
	DA31-10110L						1151//00112
	DA31-10110G						1100/0002
20	DA73-10109A	PIPE-CONNECT					
21	DA63-40171B	GROMMET-SUCT PIPE					
22	DA97-00180A	TRAY-DRAIN WATER ASSY					230V~240V(R600a)
	DA97-00180B	TRAY-DRAIN WATER ASSY					230V~240V(R134a)
	DA97-00180C	TRAY-DRAIN WATER ASSY					220V(R134a)
	DA97-00180D	TRAY-DRAIN WATER ASSY					127V(R134a)
	DA97-00180E	TRAY-DRAIN WATER ASSY					115V/(R134a)
22	DA37-00100L						1101(110+4)
23	DA73-10314G	PIPE-SUD COND ASST					
24							Doog
25	MK4A3QL1U/E01						Kouua
	DK182Q-L2U	COMPRESSOR					K134a
	SK190H-L2U	COMPRESSOR					R134a
	DK(MK)172P-L2U	COMPRESSOR					R134a
	DK(MK)172C-L2U	COMPRESSOR					R134a
26	DA73-30102B	DRYFR-ASSY					
27	DA34-100020						ATM232DHRVV_52
21	DA34-10003C						4TW252FTIDTT-55
	DA34-10003F						41W200KFD11-00
	DA34-20003W	PROTECTOR O/L					41M314PHBYY-53
	DA34-10003T	PROTECTOR O/L					41M435PHBYY-53
	DA34-10003D	PROTECTOR O/L					4TM437RHBYY-53
28	DA35-10013B	RELAY-PTC					J531Q35E330M385-2
	DA35-10013I	RELAY-PTC					J531Q34E220M350-2
	DA35-10013M	RELAY-PTC			Ň	Ň	J531033F100M200-2
20	DA63-10252A						VUU IQUUL IUUIVILUU L
20	DA03-10332A						
30	DAT 1-00141D						
31	DA61-40101C						
32	DA60-90101A	RIVET-CASTER					
33	DA63-40004A	GROMMET COMP					
34	DA62-00217A	SEAL-SUB COND					R134a

10. Disassembly & Assembly

10-1. Replacement of refrigerator lamp

Warning

Always take out the power plug when replacing the refrigerator lamp. There is the danger of electric shock.

- 1. Remove the cover with the back latch pressed.
- 2. Pull out the lamp.
- 3. After replacing the lamp, assemble the front latch of cover and then connect the back latch.
- 4. Plug in and check if power is cut off or not by pressing the R-door switch.

10-2. Replacement of refrigerator fluorescent lamp

Warning

Always take out the power plug when replacing the refrigerator lamp. There is the danger of electric shock.

- 1. Remove a screw from the cover and pull down the cover with the back latch pressed.
- 2. Pull out the lamp.
- 3. After replacing the lamp, assemble the front latch of cover and then connect the back latch and screw on the cover.

10-3. Replacement of freezer lamp

Warning

Always take out the power plug when replacing the refrigerator lamp. There is the danger of electric shock.

- 1. Remove the cover by pressing the bottom latch.
- 2. Replace the lamp by turning it counter-clock wise.

 Reassemble the cover in the reverse order of disassembly and plug in and the check if power is cut off by pressing the door switch.

10-4. Disassembly of the cooling cycle in the refrigeration room

1. Take out food stuffs and trays from refrigeration room.

- 2. Remove 4 cap screws with (–) driver or similar tools.
- 3. Remove 6 screws from the cover-evap. ref. assy

- 4. Remove 2 latches from the bottom of the cover in the front of evaporator.
- 5. Remove the evaporator cover by pulling out the bottom of the evaporator cover.

6. Remove the housing of wires.

Cooling cycle unit assembly in the refrigeration compartment

Dust assembly in the refrigeration compartment

10-5. Disassembly of the cooling cycle unit in the freezer

1. Take out the case from the freezer.

2. Remove 2 screws from the assy-supt free.

3. Pull out the holder of the assy-supt free and disconnect wire terminals.

5. Remove each terminal from the top of the left wire assembly.

6. Remove 2 screws from the back cover of the cooling cycle unit and remove the latch with (–) driver.

Assembly of the cooling cycle unit in the freezer

10-6. Assembly of mechanic compartment in the refrigerator

1. Remove the screws securing the mechanic compartment cover of the back bottom of the refrigerator.

10-7. Electric box assembly

Warning

Make sure the power plug is taken out when replacing the components for the main PCB.

1. Disconnect the power cord.

2. Remove the cover of electrical box with (–) driver.

3. Assembly specification of electric box

- 1. With dispenser model.
- 1-1) Press the fixing lever, lift the exclusive water tank upwards, then remove it.

1-3) Push the latch of control panel assembly with (-) driver and pull out the control panel

2. Without dispenser model

2-1) Remove 3 screws from the assembly control panel and pull out the assembly control panel.

11. PCB Circuit Diagram

12. Specifications of main components

12-1 Regulator

3-TERMINAL 1A POSITIVE VOLTAGE REGULATORS

The MC78XX/MC78XXA series of three-terminal positive regulators are available in the TO-220 package and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local onward regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can derive over aA output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents. MC78XXI is characterized for operation from -40°°C to +125°C, and MC78XXC from 0°C to +125°C. TO-220 1 2 3 1 : Input 2 : GND 3 : Output

FEATURES

- Output Current up to 1.5A
- Output voltages of 5;6;8;9;10;11;12;15;18;24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor SOA Protection
- · No external components required
- Output current in excess of 1A
- Industrial and commercial temperature range

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
MC78XXCT	TO-220	0 125%
MC78XXACT	TO-220	0~+1250
MC78XXT	TO-220	-40~+125℃

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Input Voltage (for $V_0 = 5V$ to $18V$)	Vin	35	V
(for V ₀ = 24V)	VIN	40	V
Thermal Resistance Junction - Cases	θ」C	5	°C/W
Thermal Resistance Junction - Air	θJA	65	θ/\\\
Operating Temperature Range MC78XXC/AC	_	0 ~ +125	°C
MC78XXI	l opr	-40 ~ +125	°C
Storage Temperature Range	Tstg	-65 ~ +150	°C

REGULATOR(MC7812C)

ELECTRICAL CHARACTERISTICS MC7812

(Refer to test circuit, $T_{min} < T_i < T_{max}$, $V_i = 500$ mA, $V_i = 19V$, $C_i = 0.33 \mu F$, $C_o = 1.0 \mu F$ unless otherwise specified)

Chanadariatia	Cumhal	Tost Conditions		r	Unit		
Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
			Ti = 25℃	11.5	12	12.5	
	N	5	.0mA≤l₀≤1.0A, P₀≤15W				
Output Voltage	Vo		$V_{in} = 14.5V$ to 27V	11.4	12	12.6	
	$ \begin{array}{ c c c c c c c } \hline V_{0} & V_{in} = 14.5V \ to \ 27V & 11.4 & 12 & 1 \\ \hline V_{i} = 15.5V \ to \ 27V & 11.4 & 12 & 1 \\ \hline V_{i} = 15.5V \ to \ 27V & 10 & 22 \\ \hline & & & & & & & & & & & & & & & & & &$						
Line Devulation		T: 05 %	$V_i = 14.5V$ to 30V		10	240	m\/
Line Regulation	ΔVo	11 = 25 ($V_i = 16V$ to 22V		3.0	120	
Lood Degulation		T : 05%	$I_0 = 5.0$ mA to 1.5V		12	240	m\/
Load Regulation	ΔVO	II = 25℃	I _o = 250mA to 750mA		4.0	120	
Quiescent Current	la		Ti = 25℃		5.1	8	mA
			Io = 5mA to 1.0A			0.5	
Quiescent Current Change	∆la		$V_i = 14.5V$ to 30V			1.0	mA
		Vi = 15V to 30V					
Output Voltage Drift	∆V₀/∆T		Io = 5mA		-1		mV/°C
Output Noise Boltage	Vn	f =	= 10Hz to 100KHz Ti = 25° C		75		μN
Ripple			fF = 120Hz				
Rejection	RR		$V_i = 15$ to $25V$	55	71		dB
Dropout Voltage	VD		l₀ = 1A, Ti = 25°C		2		V
Output Resistance	Ro		f = 1KHz		18		mΩ
Short Circuit Current	Isc		Vi = 35V, Ti = 25℃		250		mA
Peak Current	Ipeak		Ti = 25℃		2.2		Α

* Tmin < Ti < Tmax

$$\label{eq:MC78XXI:Tmin} \begin{split} & \text{MC78XXI:Tmin} = -40^\circ \mathbb{C}, \ \text{T}_{\text{max}} = 125^\circ \mathbb{C} \\ & \text{MC78XXC,} \ \text{T}_{\text{min}} = 0^\circ \mathbb{C}, \ \text{T}_{\text{max}} = 125^\circ \mathbb{C} \\ & \text{Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into$$
account separately. Pulse testing with low duty is used.

KA78LXXA/KA78L05AA 3-Terminal 0.1A Positive Voltage Regulator

Features

- Maximum Output Current of 100mA
- Output Voltage of 5V, 6V, 8V, 9V,10V, 12V, 15V, 18V and 24V
- Thermal Overload Protection
- Short Circuit Current Limiting
- Output Voltage Offered in \pm 5% Tolerance

Description

The KA78LXXA/KA78L05AA series of fixed voltage monolithic integrated circuit voltage regulators are suitable for application that required supply current up to 100mA.

Internal Block Diagram

©2001 Fairchild Semiconductor Corporation

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for $V_O = 5V$, $8V$) (for $V_O = 12V$ to $18V$) (for $V_O = 24V$	VI	30 35 40	V V V
Operating Junction Temperature Range	TJ	0 ~ +150	С
Storage Temperature Range	TSTG	- 65 ~ +150	С

Electrical Characteristics(KA78L05A)

(VI = 10V, IO = 40mA, 0 C TJ 125 C, CI = 0.33 F, CO = 0.1 F, unless otherwise specified. (Note 1)

Paramete	r	Symbol	Со	nditions	Min.	Тур.	Max.	Unit
Output Voltage		Vo	TJ = 25°C		4.8	5.0	5.2	V
Line Regulation (Not	te1)	Vo	$T_{\rm L} = 25^{\circ} C$	7V VI 20V	-	8	150	mV
	,	V0	15 - 25 C	8V VI 20V	-	6	100	mV
Load Population (No	to1)	Vo	$T_{\rm L} = 25^{\circ} C$	1mA IO 100mA	-	11	60	mV
	ne r)		15 - 25 C	1mA IO 40mA	-	5.0	30	mV
			7V VI 0V	1mA IO 40mA	-	-	5.25	V
Output Voltage		Vo	7V VI VMAX (Note 2)	1mA IO 70mA	4.75	-	5.25	V
Quiescent Current		lq	TJ = 25°C			2.0	5.5	mA
Quiescent Current	with line	lq	8V VI 20V		-	-	1.5	mA
Change	with load	lq	1mA IO 40 mA		-	-	0.1	mA
Output Noise Voltag	е	VN	T _A = 25°C, 10Hz f 100KHz		-	40	-	V/Vo
Temperature Coeffic	ient of Vo	Vo/ T	I _O = 5mA		-	-0.65	-	mV/ C
Ripple Rejection		RR	f = 120Hz, 8V VI 18V, TJ = 25°C		41	80	-	dB
Dropout Voltage		VD	TJ = 25°C		-	1.7	-	V

Note:

1. The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

2. Power dissipation PD 0.75W.

KSR1005

NPN EPITAXIAL SILICON TRANSISTOR

SWITCHING APPLICATION (Bias Resistor Built In)

Switching Circuit, Inverter, Interface circuit Driver circuit.
 Built in bias Resistor (R,=4.7KΩ, R=10KΩ)
 Complement to KSR2005

ABSOLUTE MAXIMUM RATINGS (Ta=25°C

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	Vсво	50	V
Collector-Emitter Voltage	Vсво	50	V
Emitter-Base Voltage	Vсво	10	V
Collector Current	lc	100	mA
Collector Dissipation	Pc	300	mW
Junction Temperature	Ti	150	°C
Storage Temperature	Tstg	-55-150	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C

Characteristic	Symbol	Test Condition	Main	Тур	Max	Unit
Collector-Base Breakdown Voltage	ВVсво	Ic=10uA, Iв=0	50			V
Collector-Emitter Breakdown Voltage	ВVсво	Ic=100uА, Iв=0	50			V
Collector Cutoff Current	СВО	Vcb=40V, Ib=0			0.1	uA
DC Current Gain	Hc	Vсв=5V, Iв=5mA	30			
Collector-Emitter Saturation Voltage	V _{CE(sat)}	lc=10mA, lв=0.5mA			0.3	V
Output Capacitance	Cob	Vсв=10V, Iв=0		3.7		pF
		t=1MHz				
Current Gain-Bandwidth Product	Fr	Vсв=10V, Iс=5mA		250		MHz
Input Off Voltage	Vi(off)	Vсв=5V, Ic=100uA	0.3			V
Input On Voltage	Vi(off)	Vсв=0.3V, Ic=20mA			2.5	V
Input Resistor	Rı		3.2	4.7	6.2	KΩ
Resistor Ratio	R1/R2		0.42	0.47	0.52	

12-3 3.3V VOLTAGE DETECTOR

I>FEATURES

- Detecting against error operations at the power ON/OFF.
 Resetting function for the low voltage microprocessor.
 Checking low battery.

I> ORDERING INFORMATION

Device	Package	Operating Temperature
KA7533Z	TO-92	− 30 ~ +75°C

|>BLOCK DIAGRAM

Absolute Maximum Rating (T_A=25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	0.3 ~ + 15.0	V
Detecting Voltage	Vdet	2.5/2.7/2.9/3.1 3.3/3.6/3.9/4.2/4.5	V
Hysteresis Voltage	VHYS	50	mV
Operating Temperature	Topr	- 25 ~ + 85	°C
Storage Temperature	TSTG	- 50 ~ + 150	°C
Power Dissipation	PD	200	mW
Detecting Voltage Temperature Coefficient	∆V _{DET} / T	RL = 200 , +0.01	%/ °C

Electrical Characteristics (TA=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Detecting Voltage	Vdet	$\begin{array}{c} R_{L}{=}200\Omega \\ V_{OL}{\leq}0.4V \\ \end{array} \begin{array}{c} KA75250 \\ KA75270 \\ KA75290 \\ KA75310 \\ KA75330 \\ KA75360 \\ KA75390 \\ KA75420 \\ KA75450 \\ \end{array}$	2.35 2.55 2.75 2.95 3.15 3.45 3.75 4.05 4.35	2.5 2.7 2.9 3.1 3.3 3.6 3.9 4.2 4.5	2.65 2.85 3.05 3.25 3.45 3.75 4.05 4.35 4.65	V
Low Output Voltage	Vol	RL=200 Ω	-	-	0.4	V
Output Leakage Current	Ilkg	V _{CC} =15V	-	-	0.1	uA
Hysteresis Voltage	VHYS	RL=200 റ	30	50	100	mV
Detecting Voltage Temperature Coefficient	VDET/ T	RL=200 Ω	-	±0.01	-	%/°C
Circuit Current(at on time)	ICCL	VCC=VDET(MIN)-0.05V	-	300	500	uA
Circuit Current(at off time)	Іссн	Vcc=5.25V	-	30	50	uA
Threshold Operating Voltage	Vth(opr)	RL=200∩, VoL ≤0.4V	-	0.8	1.0	V
" L"± Transmission Delay Time	TOL	RL=1.0K∩, CL=100pF	0.6	10	-	uS
" H"± Transmission Delay Time	Тон	RL=1.0K∩, CL=100pF	-	15	20	uS
Output Current (at on time)	Ioli	VCC=VDET(MIN) -0.05V, TA=25°C	10	20	30	mA
Output Current (at on time)	Iolii	VCC=VDET(MIN) - 0.05V TA= -25 ~ + 85°C	8	16	30	mA

Features

- · Low-voltage and Standard-voltage Operation
 - $-5.0 (V_{cc} = 4.5V \text{ to } 5.5V)$
 - $-2.7 (V_{cc} = 2.7V \text{ to } 5.5V)$

 - $-2.5 (V_{cc} = 2.5V \text{ to } 5.5V)$ $-1.8 (V_{cc} = 1.8V \text{ to } 5.5V)$
- User-selectable Internal Organization
 - 1K: 128 x 8 or 64 x 16
 - 2K: 256 x 8 or 128 x 16
 - 4K: 512 x 8 or 256 x 16
- □ 3-wire Serial Interface
- 2 MHz Clock Rate (5V) Compatibility
- □ Self-timed Write Cycle (10 ms max)
- High Reliability - Endurance: 1 Million Write Cycles
 - Data Retention: 100 Years
 - ESD Protection: >4000V
- □ Automotive Grade and Extended Temperature Devices Available
- □ 8-pin PDIP, 8-lead JEDEC and EIAJ SOIC, and 8-lead TSSOP Packages

Description

The AT93C46/56/57/66 provides 1024/2048/4096 bits of serial electrically erasable programmable read only memory (EEPROM) organized as 64/128/256 words of 16 bits each, when the ORG pin is connected to V_{CC} and 128/256/512 words of 8 bits each when it is tied to ground. The device is optimized for use in many industrial and commercial applications where low power and low voltage operations are essential. The AT93C46/56/57/66 is available in space saving 8-pin PDIP and 8-lead JEDEC and EIAJ SOIC packages. (continued)

Pin Configurations

Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
VCC	Power Supply
ORG	Internal Organization
DC	Don't Connect

8-lead TSSOP

	8 🗖 VCC
SK <u></u> 2	7 🗖 DC
DI 🖂 3	6 🗔 ORG
DO 🖂 4	5 🗖 GND

3-wire Serial EEPROMs

1K (128 x 8 or 64 x 16) 2K (256 x 8 or 128 x 16) 4K (512 x 8 or 256 x 16)

AT93C46 AT93C56 AT93C57 AT93C66

Rev. 0172L-10/99

<u>AIMEL</u>

The AT93C46/56/57/66 is enabled through the Chip Select pin (CS), and accessed via a 3-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a READ instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The WRITE cycle is completely self-timed and no separate ERASE cycle is required before WRITE. The WRITE cycle is only enabled when the part is in the

Absolute Maximum Ratings*

Operating Temperature	-55°C to +125°C
Storage Temperature	-65°C to +150°C
Voltage on Any Pin with Respect to Ground	1.0V to +7.0V
Maximum Operating Voltage	6.25V
DC Output Current	5.0 mA

Block Diagram

ERASE/WRITE ENABLE state. When CS is brought "high" following the initiation of a WRITE cycle, the DO pin outputs the READY/BUSY status of the part.

The AT93C46 is available in 4.5V to 5.5V, 2.7V to 5.5V, 2.5V to 5.5V, and 1.8V to 5.5V versions. The AT93C56/57/66 is available in 4.5V to 5.5V, 2.7V to 5.5V, and 2.5V to 5.5V versions.

^{*}NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Note: 1. When the ORG pin is connected to V_{CC}, the x 16 organization is selected. When it is connected to ground, the x 8 organization is selected. If the ORG pin is left unconnected, then an internal pullup device (of approximately 1 M) will select the x 16 organization. This feature is not available on 1.8V devices.

2 AT93C46/56/57/66
3

Pin Capacitance⁽¹⁾

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = +5.0V$ (unless otherwise noted).

Symbol	Test Conditions	Max	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	$V_{OUT} = 0V$
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	$V_{IN} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.

DC Characteristics

Applicable over recommended operating range from: $T_{AI} = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = +1.8V$ to +5.5V, $T_{AC} = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = +1.8V$ to +5.5V (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			1.8		5.5	V
V _{CC2}	Supply Voltage			2.5		5.5	V
V _{CC3}	Supply Voltage			2.7		5.5	V
V _{CC4}	Supply Voltage			4.5		5.5	V
	Supply Current	V - 5 0V	READ at 1.0 MHz		0.5	2.0	mA
ICC	Supply Current	$v_{\rm CC} = 5.0$ v	WRITE at 1.0 MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 1.8V	CS = 0V		0	0.1	μΑ
I _{SB2}	Standby Current	V _{CC} = 2.5V	CS = 0V		6.0	10.0	μA
I _{SB3}	Standby Current	V _{CC} = 2.7V	CS = 0V		6.0	10.0	μΑ
I _{SB4}	Standby Current	$V_{\rm CC} = 5.0 V$	CS = 0V		17	30	μΑ
IL	Input Leakage	$V_{IN} = 0V$ to V_{CC}	0.		1	1.0	μA
I _{OL}	Output Leakage	$V_{IN} = 0V$ to V_{CC}	0.		1	1.0	μA
$V_{IL1}^{(1)}$ $V_{IH1}^{(1)}$	Input Low Voltage Input High Voltage	4.5V V _{CC} 5.5V		-0.6 2.0		0.8 V _{CC} + 1	V
$V_{IL2}^{(1)}$ $V_{IH2}^{(1)}$	Input Low Voltage Input High Voltage	1.8V V _{CC} 2.7V		-0.6 V _{CC} x 0.7		V _{CC} x 0.3 V _{CC} + 1	V
V _{OL1}	Output Low Voltage		I _{OL} = 2.1 mA			0.4	V
V _{OH1}	Output High Voltage	4.5V V _{CC} 5.5V	I _{OH} = -0.4 mA	2.4			V
V _{OL2}	Output Low Voltage		I _{OL} = 0.15 mA			0.2	V
V _{OH2}	Output High Voltage	1.8V V _{CC} 2.7V	I _{OH} = -100 μA	V _{CC} - 0.2			V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

INTEGRATED CIRCUIT TOSHIBA TECHNICAL DATA

TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT TD62001P, TD62001AP, TD62001F, TD62001AF TD62002P, TD62002AP, TD62002F, TD62002AF TD62003P, TD62003AP, TD62003F, TD62003AF TD62004P, TD62004AP, TD62004F, TD62004AF SILICON MONOLITHIC

7CH DARLINGTON SINK DRIVER

The TD62001P/AP/F/AF Series are high-voltage, highcurrent darlington drivers comprised of seven NPN darlington pairs.

All units feature integral clamp diodes for switching inductive loads.

Applications include relay, hammer, lamp and display (LED) drivers.

FEATURES

- Output current (single output) 500mA MAX.
- High sustaining voltage output
 - 35V MIN. (TD62001P/F Series) 50V MIN. (TD62001AP/AF Series)
- Output clamp diodes
- Inputs compatible with various types of logic
- Package, Tvpe-P. AP : DIP-16pin
- Package Type-F, AF : SOP-16pin

TD62001P / AP TD62002P / AP TD62003P / AP TD62004P / AP DIR16-R 200A TD62001F / AF TD62002F / AF TD62003F / AF TD62004F / AF TD62004F / AF

Weight DIP16-P-300A : 1.11g (Type) SOP16-P-225 : 0.16g (Type)

ТҮРЕ	INPUT BASE RESISTOR	DESIGNATION
TD62001P/AP/F/AF	External	General Purpose
TD62002P / AP / F / AF	10.5-k Ω + 7V Zenner diode	14~25V PMOS
TD62003P / AP / F / AF	2.7kΩ	TTL, 5V CMOS
TD62004P / AP / F / AF	10.5k Ω	6~15V PMOS, CMOS

PIN CONNECTION (TOP VIEW)

O The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. O These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring equipment, domestic applications, etc.). please make sure that you consult with us before you use these TOSHIBA products in equipment which requires extraordinarily high quality and/or reliability, and in equipment which may involve life threatening or critical application, including but not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion control, all types of safety devices, etc. TOSHIBA conta accept and hereby disclaming liability for any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

T	D	6	2()()1	Ρ	-	1	

<u> 1995 – 5 – 29</u>

ത

INTEGRATED CIRCUIT TOSHIBA TECHNICAL DATA

TD62001P, TD62001AP, TD62001F, TD62001AF TD62002P, TD62002AP, TD62002F, TD62002AF TD62003P, TD62003AP, TD62003F, TD62003AF TD62004P, TD62004AP, TD62004F, TD62004AF

SCHEMATICS (EACH DRIVER)

(Note) The input and output parasitic diodes cannot be used as clamp diodes.

CHARACTERIS	TIC	SYMBOL	RATING	UNIT	
Output Sustaining P, F			-0.5~35	V	
Voltage	AP, AF	VCE (SUS)	-0.5~50	v	
Output Current		IOUT	500	mA / ch	
Input Voltage		V _{IN} (Note 1)	-0.5~30	V	
Input Current		I _{IN} (Note 2)	25	mA	
Clamp Diode	P, F	N-	35	v	
Reverse Voltage	AP, AF	٧R	50		
Clamp Diode Forwa	rd Current	١F	500	mA	
	Р		1.0	w	
Power Dissipation	AP	PD	1.47		
	F, AF		0.54/0.69 (Note 3)		
Operating	Р	т	- 30~75	°C	
Temperature	AP, F, AF	lopr	- 40~85		
Storage Temperatur	e	T _{stg}	- 55~150	°C	

MAXIMUM RATINGS (Ta = 25°C)

(Note 1) Except TD62001P/AP/F/AF

(Note 2) Only TD62001P/AP/F/AF

(Note 3) On glass epoxy PCB $(30 \times 30 \times 1.6$ mm Cu 50%)

TD62001P – 2

1995 – 5 – 29

INTEGRATED CIRCUIT TOSHIBA

TECHNICAL DATA

TD62001P, TD62001AP, TD62001F, TD62001AF TD62002P, TD62002AP, TD62002F, TD62002AF TD62003P, TD62003AP, TD62003F, TD62003AF TD62004P, TD62004AP, TD62004F, TD62004AF

CHARACTERISTIC		SYMBOL	CONDITION		MIN.	TYP.	MAX.	UNIT		
Output Sustaining P, F					0	—	35	V		
Voltage		AP, AF	VCE (SUS)			0	—	50	v	
					Duty = 10%	0	—	370		
				$T_{pw} = 25 ms$	Duty = 50%	0	—	130		
Output Current		Б		7 Circuits	Duty = 10%	0	—	295	mA / ch	
Output Current				Ta = 85°C	Duty = 50%	0	—	95		
				T _j = 120°C	Duty = 10%	0		233		
		Г, АГ			Duty = 50%	0	—	70		
	Exce	ept								
Input Voltage	TD6	62001P/	VIN			0	—	24	V V	
	AP/	/F/AF								
	TD6	2002		10UT - 400mA	10UT - 400mA			24	v	
(Output On)	TD62003		VIN (ON)	00 = 400 mA	2.8	—	24			
(output on)	TD6	52004		HFE = 000	6.2	—	24			
	TD6	52001				0	—	0.6		
Input Voltage	TD6	2002				0	—	7.4	v	
(Output Off)	TD6	52003				0	—	0.7		
	TD6	2004				0	—	1.0		
Input Current	Onl TD6	y 52001	IIN			0		10	mA	
Clamp Diode Reve	rse	P. F						35		
Voltage AP. AF		VR			_		50	l v		
Clamp Diode Forw	/ard	Current	IF				_	350	mA	
•		Р	· · ·					0.6		
Power Dissipation		AP	PD	Ta = 85°C				0.76	w	
		AF, F	-	(Note) Ta = 85°C		—	—	0.36		

(Note) On glass epoxy PCB $(30 \times 30 \times 1.6$ mm Cu 50%)

TD62001P – 3	
1995 – 5 – 29	

INTEGRATED CIRCUIT TOSHIBA TECHNICAL DATA

TD62001P, TD62001AP, TD62001F, TD62001AF TD62002P, TD62002AP, TD62002F, TD62002AF TD62003P, TD62003AP, TD62003F, TD62003AF TD62004P, TD62004AP, TD62004F, TD62004AF

ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise noted)

CHARACTERIST	īc	SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
				V _{CE} = 50V, Ta = 25°C				50	
				V _{CE} = 50V, ⊺a = 85°C			_	100	
Output Leakage	F	lerv	1	V _{CE} = 35V, ⁻	Ta = 25°C	_	_	50	
Current	•	'CEX	'	V _{CE} = 35V, ⁻	Ta = 85°C	—	_	100	μn
	Р			V _{CE} = 35V, ⁻	Ta = 25°C	_	_	50	
	1			V _{CE} = 35V, ⁻	V _{CE} = 35V, Ta = 75°C			100	
Collector-Emitter Satur	ration			I _{OUT} = 350n	nA, I _{IN} = 500µA	_	1.3	1.6	
Voltage	ation	VCE (sat)	2	1 _{OUT} = 200n	nA, I _{IN} = 350µA	—	1.1	1.3	V
Voltage				I _{OUT} = 100n	nA, I _{IN} = 250µA		0.9	1.1	
DC Current Transfer R	atio	hFE	2	$V_{CE} = 2V, I_C$	OUT = 350mA	1000	_	—	
Input Current	TD62002			V _{IN} = 20V, I	OUT = 350mA	—	1.1	1.7	
(Output On)	TD62003	^I IN (ON)	3	V _{IN} = 2.4V,	l _{OUT} = 350mA	_	0.4	0.7	mA
	TD62004			V _{IN} = 9.5V,	IOUT = 350mA	—	0.8	1.2	
Input Current	Р		1	1 _{OUT} = 500 µ	$I_{OUT} = 500 \mu A$, Ta = 75°C		65	_	
(Output Off)	AP, F, AF	IN (OFF)	-	Ι ΟUT = 500μ	μ Α, Ta = 85°C	50	65	—	μη
	TD62002	Vin (on)			I _{OUT} = 350mA	_	_	13.7	V
				V _{CE} = 2V h _{FE} = 800	I _{OUT} = 200mA	_		11.4	
Input Voltage	TD62003		5		I _{OUT} = 350mA	l		2.6	
(Output On)			5		I _{OUT} = 200mA			2.0	
					I _{OUT} = 350mA	-		4.7	
	1002004				I _{OUT} = 200mA			4.4	
				V _R = 50V, Ta	a = 25°C	Ι		50	
				V _R = 50V, Ta	a = 85°C		_	100	
Clamp Diode	-		6	V _R = 35V, Ta = 25°C		_	I	50	μA
Reverse Current	Г	יא	0	V _R = 35V, Ta = 85°C				100	
	D			V _R = 35V, Ta = 25°C			I	50	
	F			V _R = 35V, Ta = 75°C		Ι		100	
Clamp Diode Forward	Voltage	VF	7	I _F = 350mA		-		2.0	V
Input Capacitance		CIN	-				15	-	рF
	P, F			$V_{OUT} = 35V, R_{L} = 87.5\Omega$ C _L = 15pF			0.1	_	
Turn-On Delay	AP, AF	τON	8	V _{OUT} = 50V C _L = 15pF	, $R_L = 125\Omega$	_	0.1	_	
T 0((D)	P, F			V _{OUT} = 35V C _L = 15pF	, $R_L = 87.5\Omega$	—	0.2	_	μs
Turn-Off Delay	AP, AF	^t OFF	8	V _{OUT} = 50V C _L = 15pF	, $R_L = 125\Omega$	_	0.2	_	

TD62001P – 4

1995 – 5 – 29

INTEGRATED CIRCUIT

TECHNICAL DATA

TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT TD62783AP, TD62783F, TD62783AF TD62784AP, TD62784F, TD62784AF SILICON MONOLITHIC

8CH HIGH-VOLTAGE SOURCE DRIVER

The TD62783AP/F/AF Series are comprised of eight source current Transistor Array.

These drivers are specifically designed for fluorescent display applications.

Applications include relay, hammer and lamp drivers.

FEATURES

TOSHIBA

- High output voltage Type-AP, AF : V_{CC} = 50V MIN. Type-F : V_{CC} = 35V MIN.
- Output current (single output) I_{OUT} = 500mA MIN.
- Output clamp diodes
- Single supply voltage
- Input compatible with various types of logic
- Package Type-AP : DIP-18pin
- Package Type-F. AF : SOP-18pin

ТҮРЕ	DESIGNA TION
TD62783AP/F/AF	TTL, 5V CMOS
TD62784AP/F/AF	6~15V PMOS, CMOS

TD62783AP TD62784AP
REALERATION
DIP18-P-300D
TD62783F TD62783AF TD62784F TD62784AF
THURRER
SOP18-P-375

Weight DIP18-P-300D : 1.47g (Type.) SOP18-P-375 : 0.41g (Type)

(Note) The input and output parasitic diodes cannot be used as clamp diodes.

0

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use.
No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring equipment, domestic appliances, etc.). Delease make sure that you consult with us before you us these TOSHIBA products in equipment which equire servicardinarily high quality and/or reliability, and in equipment which may involve life threatening or critical application, including but vot limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion ontrol, all types of safety devices, etc. TOSHIBA conduct accept and hereby disclaims liability for any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

TD62783AP – 1
1995 – 5 – 29
TOSHIBA CORPORATION

INTEGRATED CIRCUIT TOSHIBA

TD62783AP, TD62783F, TD62783AF TD62784AP, TD62784F, TD62784AF

TECHNICAL DATA

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTI	с	SYMBOL	RATING	UNIT	
Supply Voltage	AP, AF	Maa	50	v	
supply voltage	F	۷CC	35		
Output Current		Ιουτ	- 500	mA / ch	
Input Valtage		V _{IN} (Note 1)	15	V	
input voltage		V _{IN} (Note 2)	30	V	
Clamp Diode Reverse	AP, AF	V-	50	v	
Voltage	F	۷R	35		
Clamp Diode Forward	Current	١F	500	mA	
Power Dissipation	AP	P- (Noto 2)	1.47	w	
Power Dissipation	F, AF	PD (Note 3)	0.96		
Operating Temperature	9	T _{opr}	- 40~85	°C	
Storage Temperature		T _{stg}	- 55~150	°C	

(Note 1) Only TD62783AP/F/AF (Note 2) Only TD62784AP/F/AF

(Note 3) Delated above 25°C in the proportion of 11.7W/°C (AP Type), 7.7W/°C (F, AF Type).

RECOMMENDED OPERATING CONDITIONS ($Ta = -40 \sim 85^{\circ}C$)

	CHARA	CTERISTIC		SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
AP,		AP, AF	Vee			_	—	50		
Supply	Supply Voltage		F	VCC			_	—	35	v
					Duty = 10% 8 Circuits	_	_	- 260		
			Ιουτ	Ta = 85°C T _j = 120°C T _{pw} = 25ms	Duty = 50% 8 Circuits	—	_	- 59	mA / c	
Output Current					Duty = 10% 8 Circuits		_	- 180		
			AF, F			Duty = 50% 8 Circuits	I	_	- 38	
Input		TD62783AP / F / AF TD62784AP / F / AF		N N			_	—	12	- v
Voltage				VIN				—	24	
	Output	TD62783AP/F/AF		View	—		2.0	5.0	15	
Input	On	TD62784AF	P/F/AF	I VIN (ON)	—		4.5	12.0	30	v
Voltage	Output	TD62783AF	P/F/AF		—		0	—	0.8	
	Off	TD62784AF	P/F/AF	VIN (OFF)		—	0	—	2.0	
Clamp [Diode Re	verse	e AP Va		—			_	50	v
Voltage			F, AF	⊻к			—	—	35	v
Clamp [mp Diode Forward Current		١ _F	_		_	—	400	mA	
Power F	AP		Po			_	—	0.52	w	
Fower Dissipation F,		F, AF						0.35		

1995 – 5 – 29 TOSHIBA CORPORATION

79

INTEGRATED CIRCUIT TOSHIBA

TD62783AP, TD62783F, TD62783AF TD62784AP, TD62784F, TD62784AF

TECHNICAL DATA

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

СН	ARACTERIS ⁻	ACTERISTIC SYMBOL CIR- CUIT TEST CONDITION		MIN.	TYP.	MAX.	UNIT			
Output L	Output Leakage Current		ICEX	1	V _{CC} = V _{CC MAX.} V _{IN} = 0.4V Ta = 25°C	_	_	100	μΑ	
Output Saturation Voltage		V _{CE (sat)}	2	V _{IN} = V _{IN} (ON), I _{OUT} = -350mA	—	—	2.0			
				$V_{IN} = V_{IN} (ON), I_{OUT} = -225 mA$	—	_	1.9] v		
					$V_{IN} = V_{IN} (ON), I_{OUT} = -100 \text{mA}$	—	—	1.8		
	TD62702A				V _{IN} = 2.4V	—	36	52		
Input	ID62/83AP/F/AF		1	2	V _{IN} = 3.85V	—	180	260	1	
Current	Current		IN (ON)	3	V _{IN} = 5V	—	92	130	$1^{\mu A}$	
	ID62784AP/F/AF				V _{IN} = 12V	—	790	1130		
	TD62783A	P/F/AF	Maria		V _{CE} = 2.0V	—	—	2.0		
Input	TD62784AP/F/AF TD62783AP/F/AF TD62784AP/F/AF		VIN (ON)	4	I _{OUT} = – 350mA	—	—	4.5	v	
Voltage			VIN (OFF)		Laura 6000	0.8	—	—		
					$IOUT = -300 \mu A$	2.0	—	—		
Supply C	ply Current I _{CC (ON)} 3 V _{IN} = V _{IN (ON)} , V _{CC} = 50V		$V_{IN} = V_{IN} (ON), V_{CC} = 50V$	—	—	2.5	mA / c			
Clamp D	iode	AP, AF		V _R = 50V	—	—	50			
Reverse	Current	F			V _R = 35V	—	—	50	μΑ	
Clamp D	iode Forwa	ard	VF	6	lF = 350mA			2.0	v	
Voltage			<u> </u>							
Turn-On	Delay		ton	7	$V_{CC} = V_{CC} MAX. R_L = 125\Omega$		0.15	—	115	
Turn-Off	Delay		tOFF		$ C_{L} = 15pF, R_{L} = 88\Omega$ (F)	—	1.8	—	و مر	

TD62783AP – 3
1995 – 5 – 29
TOSHIBA CORPORATION

© Samsung Electronics Co., Ltd. November 2001 Printed in Korea Code-No : DA68-01130A REV(0.0)